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Abstract-The differential approximation is extended to account for anisotropic scattering in invariant 
three-dimensional form. A moment method using polyadic Legendre functions establishes that pressure 
cross-sections should take precedence over extinction cross-sections for treating radiation heat transfer in 
an absorbing, emitting, and scattering medium, and that use of these cross-sections accounts for the extent 
of preferred forward or backward scattering. The resulting generalized differential approximation is 

discussed in several simple example problems. 

‘I. INTRODUCTION 

A RELATIVELY simple yet general method of treating 
thermal radiation heat transfer within an absorbing, 
emitting and scattering medium with and without 
other modes of heat transfer is clearly needed and 
should have broad applicability. In particular, it is 
of significance to current problems involving nuclear 
reactor accidents under conditions of severe core melt- 
down and dispersal of high-temperature airborne 
debris within containment, wherein the removal of 
heat from clouds of molten and particulate aerosol by 
thermal radiation with combined absorption, emission, 
and scattering, is an important safety consideration. 

In recent years the multi-dimensional aspects of 
such phenomena have been studied using various 
special methods. For example, the P-N approxima- 
tion has been employed extensively by Mengiic and 
Viskanta [l] and by Ratzel and Howell [2]. The 
method of finite elements has been applied by Raz- 
zaque et al. [3, 41 and by Femandes et al. [5], cf. also 
Fernandes and Francis [6], as well as Wu et al. [7]. 
Solutions to the radiative transport equation by dis- 
crete ordinates have been obtained by Fiveland 181. 

These approaches are relatively tedious to apply in 
comparison to the differential approximation, which 
as a powerful useful generalization of the classical 
Rosseland diffusion approximation to arbitrary 
optical depths, for an absorbing and emitting medium 
is well known [9, lo]. This method was extended by 
Azad and Modest [I l-14] to include linear anisotropic 
scattering and shown to agree well with the exact 
solution to the corresponding radiative transport equa- 
tion for this case. With new interpretations the calcu- 
lations and solutions reported for linear anisotropic 
scattering using the differential approximation should 
all apply to general anisotropic scattering phase func- 
tions, and also offer some confidence in the accuracy 
of the method when generalized in the absence of 
exact solutions. 

Such a generalized formulation of the method is 

appropriate because most single scattering even by 
spherical particles is anisotropic with considerable 
skewing or preferences for the forward or backward 
directions relative to incident radiation. In this paper 
we present (Section l), derive (Section 2), and exem- 
plify (Section 3), a generalized differential approxi- 
mation for isotropic media. The formulation, which 
includes anisotropic scattering, is presented and 
derived in coordinate-system invariant form suitable for 
application to three-dimensional problems. Properly 
applied it should prove useful for development and 
extension of computer codes as well as in analytic 
studies. 

Section 1 exhibits the differential approximations 
with extinction cross-sections of isotropic scattering 
replaced by pressure cross-sections. The relationship 
to Mie scattering is described, illustrating that only the 
pressure cross-section possesses proper invariant to 
the inclusion of forward scattering. Section 2 includes 
a derivation of the formulation using polyadic Legendre 
functions while Section 2.1 describes its reduction to 
the linear anisotropic form and the one-dimensional 
radiative transport equation. Section 2.2 derives the 
jump bounda~ conditions using polyadic Legendre 
functions. Section 3 is concerned with simple 
solutions, including a discussion of when and how 
existing solutions for isotropic and linear anisotropic 
scattering can be adapted in the differential approxi- 
mation to general anisotropic scattering. Then specific 
simple solutions are developed which incorporate gen- 
eral scattering with temperature stabitized by phase 
changes in plane, cylindrical, and spherical geometries 
(Sections 3.1-3.3). Section 4 describes the invariance 
of the basic radiative transport equation to a trans- 
formation involving forward scatter, as a gener- 
alization and clarification of the invariance principle 
for pressure cross-sections described in Section 1. 

1.1. Formulation 
A general three-dimensional derivation is presented 

in Section 2 which shows that the proper moment 
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NOMENCLATURE 

b” 
absorption coefficient Greek symbols 
equation (35) 

c constant 

eb black body emissive power i 

liquid volume fraction 
equations (20), (21) and (24) 
mean value of cos (@), Kronecker delta 

I modified Bessel functions of first kind E emissivity 
i radiative directional intensity tl scalar eigenvalues 
i expansion coefficient functions for i e scattering angle 

(equation (9)) a latent heat 
K extinction coefficient (a+.$ P equations (19) and (22) 
fi unit vector normal to surface P mass density 

Lt 

particle number density Stefan-Boltzmann constant 
polyadic Legendre function, order I ; scattering phase function 

S scalar Legendre function, order I II, @/4x, also equation (47) or (58) 

9 radiative heat flux 6 unit directional vector 

ZX 

radiation pressure efficiency factor dw differential solid angle. 
absorption efficiency factor 

Q eXt extinction efficiency factor Subscripts 
r position vector b black body 
R radius 1 spectral (wavelength specific) 
s scattering coefficient 

I 
incident 

s source density integer 
t time n outward normal to surface 
T temperature. -n inward normal to surface 

W wall or boundary value 
R spherical or ~ylind~~al interface 
m melting point. 

equation to be associated with the ~fferentiai 
approximation for the radiant spectral heat flux vector 
q2 in an isotropic medium has the form 

V(V ‘C)- 3an(& -s&q, = 4@LVeb2 (1) 

where e,, is the spectral black body emission, a, the 
absorption coefficient, sA the total scattering coefficient 
so that & = a,+sA is the local extinction coefficient. 
For an optically thick medium this result reduces to 
a generalized form of the classical Rosseland diffusion 
approximation 

(2) 

where gradient operators are in physical, as opposed 
to optical, coordinates. The apparently new term to 
heat transfer considerations, applicable quite unre- 
strictively as shown below, is snSl, with 6n defined by 

&=cosO (-1<6,<1) (3) 

as the average of the scattering angle B between inci- 
dent and scattered directions computed using the scat- 
tering phase function, cf. equation (3.1). For scat- 
tering and absorbing spheres of radius R, and number 
density n, we have from Van de Hulst [ 151 

&-s&i, = nR2nQ,, (41 

where 

-- 
Q,r = Qext-QscacosB = Q,b,+Q,tl-cos@> G) 

is the pressure efficiency factor expressed in terms of 
extinction and scattering, or absorption and scattering 
efficiency factors. Thus it is the pressure cross-section 
which properly appears in the differential and 
diffusion forms of equations (1) and (2). 

Figure 1 schematically depicts the range of values 
permitted. For isotropic scattering, or when there is 
equal forward and backward scattering, 6, = 0, hence, 
the extinction and pressure cross-sections become 
equal and the former is applicable as is commonly 
assumed. Small dielectric particles, for example, have 
6:, < 0 corresponding to a preponderance of back scat- 
ter, which diminishes the effective radiant thermal 
conductivity in equation (2) or equation (I). Large 
dielectric spheres, in contrast, have predominantly 
forward scatter so &A > 0, which enhances the effective 
conductivity as expected. The importance of these 
distinctions increases as scattering albedo CIA = sJ& 
approaches unity, and clearly becomes insi~ificant 
for QA near zero (case b) where absorption dominates 
over all scattering. Even when Q, is not near zero, Fig. 
1 shows that the differential approximation described 
by equation (1) embodies the intuitive expectations 
that absorption would dominate if forward scatter 
were so predominant that R, approaches unity. 

Because of the relationship, equation (5), to pres- 



Anisotropic scattering in three-dimensional differential approximation 1373 

IFI 880 8=-I 

FORWARD BACKWARD 
SCATlER SCATTER 

-t-n--r a n ci 
a f s 

(a) K 

8=I 8-I 

(b) _L 
: 

FIG. 1. (a) Large scattering albedo, R. (b) Small scattering 
albedo. 

sure cross-sections, as well as the simplicity of the in- 
tegrations for explicit scattering phase functions @A, 
some information is readily available to determine a1 

computationally and analytically, via integration 

cos0 = i 
I 

^@~(8)sinBcostYd0. (3.1) 
0 

We note limiting values of -4/9, and -215 -x2/15 
with x = 2nR/1, easily determined respectively for 
diffuse spheres (Lambert reflectors), and small highly 
reflective conducting spheres. Early tabulated values 
of cos fl were computed by Debeye, cf. ref. [ 151, p. 226. 
Numerous values of QPr or cos0 are also reported 
therein at assorted refractive indices, e.g. pp. 276, 
280, 161, and Hottel and Sarofim [16] (p. 389) have 
provided a convenient plot of cos 8 vs real refractive 
index for large transparent spheres. For intermediate 
sizes of non-absorbing spheres (!J + l), ref. [ 151 indi- 
cates that a1 changes sign from backward to forward 
scattering at a size parameter x = 1.38, cf. also ref. 
[16], p. 406, for a corresponding plot of case over a 
full range of x. General computations of Q1, and hence 
6,, for arbitrary absorbing and scattering spheres with 
non-asymptotic values of complex refractive index 
require application of the Mie scattering solution, cf. 
refs. [15, 161. 

Table 1 depicts sample values of the absorption, 
extinction, and pressure efficiency factors for water 
droplets from 1 to 500 pm at a wavelength of 1.5 pm, 
calculated from the Mie solution. This demonstrates 
that extinction coefficients tend to be factors of 2-3 
larger than the pressure coefficients. Thus, the use of 
QPr is quantitatively very significant to heat transfer 
calculations. 

A clarification on the relationship of the Mie solu- 
tion to present formulations for heat transfer con- 
siderations is appropriate. For determination of any 
of the scattering cross-sections, the Mie solution con- 
tains contributions to scattering associated with 
diffraction which are inseparable from refraction- 
reflection contributions except in the asymptotic limit 

Table 1. Comparison of pressure and extinction cross-sec- 
tions for water droplets in air at a = 1.5 pm, n = 1.32-0.0061’ 

Radius (pm) Q es Q ert QP 

1 0.100 2.83 0.535 
2 0.203 3.22 0.720 
5 0.435 2.08 0.692 

10 0.620 2.06 0.757 
20 0.825 2.11 0.892 
50 0.951 2.05 0.984 

100 0.952 2.04 0.981 
200 0.944 2.02 0.973 
500 0.989 2.01 0.968 

of particles sufficiently large that geometric ray optics 
is applicable. In this limit the separable diffraction 
component becomes pure forward scatter, i.e. con- 
tributes a Dirac delta function 6 (cos 0 - 1) component 
to the scattering phase function, as well as defines a 
contribution to the total scattering coefficient sl. It 
appears customary to omit the diffraction part of s1 
in applying the extinction coefficient Kl = al+s, to 
heat transfer considerations because undeflected for- 
ward scatter is thermally equivalent to no scatter. 
This, however, presents an ambiguity in applying the 
Mie solution for intermediate size particles, i.e. 
removed from the ray optics limit, in determining 
applicable values of si, Kl. In such circumstances the 
diffraction contribution cannot be separated and must 
not be omitted since it contributes to deflected for- 
ward scatter; but then the limit of ray optics values 
for sI and Kl is not approached. 

This ambiguity is eliminated when the extinction 
coefficient KL is properly replaced by KA - s,6, in heat 
transfer considerations as defined in equation (1) or 
equation (2) as this coefficient automatically screens 
out contributions from undeflected forward scatter. 
To demonstrate this, consider the ray optics limit 
with and without a diffraction term. Consider non- 
absorbing spheres with phase function al(e) which 
does not include diffraction, and associated scattering 
coefficient s,+ The value of &A is then determined by 
equations (3) and (3.1). If diffraction is now included, 
sI must be replaced by 2s, and @‘i by @‘,/2+ cS(cos 
0-l). Applying these to equations (3) and (3.1) 
the value of s,( I- 6,) thereby becomes 

2s,(l-6*/2- l/2) --= s,(l-6,). 

This invariance of K*- s,6* to the inclusion of forward 
diffraction scatter confirms the validity of the choice 
Ki - ~~6~ over the total extinction coefficient Kl for use 
in heat transfer considerations involving the differ- 
ential approximation. 

2. DERIVATION OF DIFFERENTIAL 

APPROXIMATION WITH SCATTERING 

Our starting point is the field equation form of 
the radiative transfer equation for spectral intensity 
i(r, &) 
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&*Vi= -Ki+ai,+s 
s 

i(r,&)$(uii.&)dwi. (6) 

Here r is a physical location vector, &I is a unit vector 
in the direction of intensity i, hi is the same for incident 

rays scattered in direction &, and dwi designates solid 
angle integration ; it,(r) = q,(r)/n denotes Planck black 
body emission intensity corresponding to local tem- 

perature 7’(r). The extinction, absorption, and scat- 
tering coefficients K, a, s are as defined above, with 1 
subscripts suppressed. The principal assumption of 

equation (6) is that the medium is isotropic, so that 
the scattering phase function ti = @‘/47-c is an isotropic 
scalar function of oii and &, i.e. is invariant to coor- 

dinate system rotations, which implies it depends only 
upon the scattering angle or cos 0 = di * 15. (This iso- 
tropic medium assumption is, of course, quite apart 
from an isotropic scattering condition according to 
which tj is constant or @ = 1, so that the amount of 
scattering of an incident ray would be uniform in all 
directions. That assumption is relaxed here.) 

Our method is to employ an expansion in irre- 
ducible tensors, i.e. polyadic Legendre functions of 
the unit vector &. As such, it may be considered an 
invariant form of the moment method or method of 
spherical harmonics, but has the distinct advantage 
of not requiring any choice of coordinate system 
which is especially useful for three-dimensional con- 
siderations. 

Polyadic Legendre functions of a unit vector & were 
first defined as such by Brenner [ 171. Their analogy to 
scalar Legendre functions P,(Z) may be seen in the 
following : 

f”(Z) = 1 P,(G) = 1 

P,(Z) = z P,(b) = & 

P*(Z) = ;z2 - ; 
3 1 

P2(&I) = -oi& --u 
2 2 

P,(Z) = ;z3 - ;z P3(&) = ;;;; - +LJ), 

(7) 

where U is the second-order unit dyadic and ( )s 
denotes symmetrization with respect to all pairs of 
tensorial indices. Thus, P,(G) is an irreducible tensor 
or polyadic of order 1, i.e. both symmetric and trace- 
less with respect to any pair of tensorial indices. Con- 
sequently, these satisfy the scalar relationships 

(&G...~),(~)‘P,(O,) 

2’(1!)2 
= (,I)Y-P/(&)(.)‘P,(&i) = P,(&*&) (8) 

where (m)’ denotes an Ith order tensorial contraction 
or dot product to scalar result. A scalar function such 
as intensity i(r, &) defined over the unit sphere range 
of C may be represented by the expansion 

i(r, &) = i,(r) + C i,(r)( *)‘Pl(&) 
I- I 

(9) 

with polyadic expansion coefficients i,(r), irreducible 
tensors determined by orthogonality and normali- 
zation of P,(h) as 

i (r) = (2f+1)(1!)22’ I 
s 

i(r &)P,(&)dw. 
4rr(21)! ’ 

(10) 

In particular, we recover for 1 = I, 0,2 

i,(r)=& ihdw=$q 
s 

(1’) 

with q the radiant heat flux vector; also that i,(r)/3 
represents the equilibrium portion of the radiation 
pressure, and that i2(r) represents the non-equilibrium 
traceless or shear portion of the radiation pressure 
tensor. 

Additional characteristics of such expansions for 
isotropic tensor functions of & with applicability to 
kinetic theory of polyatomic gases with anisotropic 
collision cross-sections and their effects on gas trans- 
port coefficients were described previously [18]. 

An important property of the scattering integral 
operator contained in equation (6) is that the P/(&I) 
are tensorial eigenfunctions of it with scalar eigen- 

values, r7!, namely 

s Il/(&.c?~)P,(&)dw, = r],P,(&). (12) 

This follows from the fact that the integral result must 
at once be an isotropic tensor function of 6, and be 
irreducible, i.e. traceless and symmetric in any tensor 
index pair. These conditions uniquely qualify P,(A) 
to within the constant ‘I!. Such scalar eigenvalues 
may be found by multiplying both sides by (*)/P,(h) 
* (2’(@‘/(2r)!) to obtain using equation (8) and the fact 
that P,(l) = 1 

q, = $(cosQ)P,(cosO)dwi = P,(cosQ. (13) 

Thus qr is the mean value of the fth scalar Legendre 
function of cost?, where 0 is the scattering angle. In 
particular we have 

‘lo= I, yI, =cos& ~*=;cos*O-_:. (14) 

We now substitute the expansion [9] into the radi- 
ative transfer equation (6) and use equation (12) to 
obtain 

V* f &P,(&)(*)‘i,(r) 
I=0 

= ai, + f (sq,-K)i,(r)(*)‘P,(b). (15) 
I- II 

A simple way to extract from equation (15), equations 
for the individual coefficients is to take full-sphere 
moments using P,(h) as weight functions, i.e. multiply 
by P,(G) and integrate using orthogonality properties 
of P,(h). This automatically truncates the series. We 
obtain immediately using & = P,(G) and direct vector 
integrations, for I= 0 and 1 
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4n: 
-3-V*i, = V-q = 4m(i,-z$) (16) 

vi,+gV*i,=(sq,-K)i, ~-$.T~--K)~. (17) 

The procedure of taking the gradient of equation (16) 
and inserting equation (17) into the result then yields 

V(V*q)-3a(K--s6)q = 4aVe, + TV*i2. (18) 

This form of the differential ‘approximation’ for spec- 
tral heat flux is evidently valid without approximation 
for an isotropic medium. Thus, to obtain equation (I) 
we need only to neglect the term containing il, i.e. 
neglect the shear or non-equilibrium portion of the 
radiation pressure tensor (and install the suppressed 
spectral 1 subscripts}. 

2. I. Relation to one-dimensional heat transfer with 
scattering 

An alternate approach to expanding the intensity 
field i(r, &) in P((&) is to consider direct expansion of 
the scattering phase function 

(D = 1 + 5 g P~(C>(‘)‘Bt,(‘rP,(~i) (19) 

,=,n=, 

where pin are expansion coefficient tensors. Conditions 
of isotropy and symmetry require both that p,,, = 0 
for 1 # n, and that & be isotropic symmetric tensors 
jl,, = 2’(~~*~~~*,/(2~! with 

= P,(&)( *)‘P@,) = (ZZ)!P,(& * ~j)/2~(~!)2. 

Thus, equation (19) becomes for isotropic media, the 
scalar Legendre function expansion, with COST = 
@.&) 

aq6) = 1 + f p,P,(cos6). (20) 
I= I 

With CD = 4?rll, and on inserting into equation (13), it 
follows that the expansions coefficients fit and the 
three-dimensional eigenvalues vi are related by 

41 = /3,/(2lf 1). (21) 

These expansion coetlicients, i.e. coefficients of scat- 
tering anisotropy, have received attention in direct 
one-dimensional considerations [ 191 of the basic radi- 
ative transfer equation (6). In this case the intensity 
field i(r,&) = i(z, p), with ~1 = G-2 the direction 
cosine of & in the direction of variation i. Choosing 
this direction also as the polar axis the scattering 
integral of equation (6) integrates directly over azi- 
muthal angle, allowing equation (20) to be replaced 
by the series 

cf, = l+P,~&+.*~ (22) 

and the basic radiative transfer equation (6) assumes 
with this form 

di 
p’_dz = -Ki+aib + _s 2 I =m4)dk. (23) 

II 

Detailed studies of this equation for i in linearly aniso- 
tropic scattering, i.e. truncating at the 8, term in equa- 
tion (23) have been performed by Beach et al. [20]. 
A comparison of equations (3), (7) (14), and (21) 
shows that their ‘anisotropy coefficient’ /l= /l, is 
related to an as employed in the differential and 
diffusion approximations~quations (1) and (2) by 

61 = 8/3 (24) 

and p is restricted by equation (3) to the range -3 
to 3. The fact that the same truncation is afforded 
automatically by the above three-dimensional con- 
siderations suggests the analysis may be quite accurate 
for heat transfer analysis with measured vaiues of a1 
or p. This conclusion is substantiated by the cal- 
culations of ref. j13] wherein the coefficient of linear 
anisotropy, a,, is interchangeable with /I, 

2.2. 3o~d~r~ conditions 
The non-invariant form of the one-dimensional 

radiative transfer equation (23) has the well-known 
advantage over the three-dimensional differential 
approximation of allowing more flexible boundary 
conditions for non-optically thick regions of an 
absorbing, emitting, and scattering medium, wherein 
the radiant intensity originating from distinct sources 
can display discontinuities, e.g. hemisphe~cal. How- 
ever, the use of generalized boundary conditions pion- 
eered by Deissler [21] considerably weakens this 
advantage. It is therefore of interest to identify any 
effect of anisotropic scattering within an isotropic 
medium on these boundary conditions. 

We consider an absorbing-emitting-diffusely 
reflecting boundary through which there is no trans- 
mission. Suppressing spectral subscripts and defining 
outward (q+,J and inward (q-J portions of the nor- 
mal heat flux q *A = q,,, the boundary balances are 

qn = 4+n -9-n (25) 

4+n = ~~i~(r)(*)‘~~~(~)~.~d~ Q*fi > 0 (26) 

4+n = Ee,,+(l --E)q-, (27) 

where E is the spectral hemispherical emissivity of the 
boundary (wall) and eb,., is the spectral Planck black 
body emissive power at that temperature. The I = 0 
and I terms of the complete expansion in (9) and (11) 
are 

3 
i(r,G) = i, -I- 41,q*hf... (28) 

This substituted into equation (26) yields 

1 1 
4+n = xi0 + 2qs + Tjfifi :i, 

+ $“i,(r)(*)’ 
I 

P,(&)&*Sdo &*ri > 0. (29) 
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To obtain closure for a boundary condition we trun- 
cate the expansion at the i = 2 term, neglect the non- 
eq~lib~um radiation-pressure term AA : iz, and insert 
the I = 0 moment equation (16). This yields 

4 +?I =eb(r)+-q+;qm (30) 

so that on combining with equations (25) and (27) to 
eliminate q +nr and 4 _n we recover the standard form 
on inserting spectral subscripts 

-&-Pi + 1 l ( > - - 2 qi’R = ebwi--ebl(r) (31) 
1 b 

in which the right-hand side is the jump condition at 
the wall in the event conduction is not included. Since 
the absorption coefficient a, appears without a scat- 
tering or extinction coefficient, we conclude that 
neither anisotropic nor isotropic scattering alters the 
jump boundary condition, This condition is less exact 
than the differential approximation, equation (l), 
since the series of equation (29) is not automatically 
truncated by orthogonality in hemispherical inte- 
grations. 

3. DISCUSSION OF SOLUTIONS 

This section is concerned with the effect of aniso- 
tropic scatter coefficient 6 in employing the extended 
differential approximation, equation (l), in several 
simplistic circumstances in which boundary condition 
(31) is applied. We confine ourselves here to grey 
media and hence remove the spectral (2) designation 
so that es assumes the usual Stefan-Boltzmann form, 
fJT4. 

In the simplest problem of steady state radiative 
transfer with no sources and radiative equilibrium, 
V*q vanishes in equations (I) and (31), hence the 
problem is equivalent to application of the modified 
diffusion approximation, equation (2). Thus existing 
solutions apply subject only to value selection of an 
equivalent extinction coefficient. However, as soon as 
distributed heat sources, heat conduction and con- 
vection, or thermal transients are incorporated, this 
simple adjustment is insufficient, and it becomes 
necessary to develop new solutions making direct 
modifications at an earlier stage of the development- 
computation process. 

For example, ref. [I 1] offers two such solutions 
accounting for linear anisotropic scattering within a 
one-dimensional plane parallel layer bounded by 
black walls, where the medium is (i) at radiative equi- 
librium, and (ii) at constant temperature. The ana- 
lytical forms for both these solutions as well as the 
graphical-numerical results are directly applicable to 
general anisotropic scattering in the differential 
approximation by substituting 6 for their a,/3, cf. 
equation (24) and subsequent remarks. The solution 
in case (i) follows directly from the corresponding 

solution for isotropic scatter by replacing K with 
K--s& In contrast, the case (ii) solution is not 
obtained this way and represents a new derivation. 

Additional solutions with linear anisotropic scat- 
tering in one-dimensional cylindrical geometry for 
three temperature profiles are provided graphically in 
ref. [13]. These too represent solutions for general 
anisotropic scattering in the differential approxi- 
mation by replacing a, /3 with 6. 

An interesting example where the effect of scattering 
can be accounted for simply, concerns the isothermal 
volumetric melting or freezing of non-opaque 
materials which is promoted in a two-phase zone by 
internal radiation. A general description of these types 
of problems with several one-dimensional appli- 
cations has been reported by Chan et al. [22]. In their 
applications these authors invoked known radiative 
transfer solution characteristics of slab geometry 
involving E functions. Here we present an alternate 
approach by applying equation (I), primarily for 
advantage in extending to thr~-dimensional geome- 
tries, including cylindrical and spherical shapes. 

3.1. One-dimensional (slab) geometry 
To make the connection to ref. [22] evident we 

briefly describe the simplest case, a semiinfinite ice 
zone at its melting point suddenly subjected to radi- 
ation at 2 = 0 from a grey surface of emissivity G. If 
a denotes the liquid volume fraction, I the latent heat 
of melting, p the density of liquid and solid, then the 
transient heat balance, equations (1) and (31), reduces 
respectively to 

with 

bZ = 3a(K-s6). (35) 

In general b2 varies with a due to variations of a, s, 
and 6. As the simplest approximation we treat it as 
constant at an intermediate mean value. Then the 
solution assumes the exponential form for time t < to 

CI = (t/to)e-bz (36) 

q = (pl/bto)e-bZ. (37) 

Here 

is the time delay required to approach complete melt- 
ing at the Z = 0 boundary and thereby establish a full 
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wave exponential melt profile e-*=. Our t/to compares 
directly with t* of ref. [22], as may be seen by 
neglecting scatter so that b = 3~. For times t > to the 
melt propagates into the medium. If the fully melted 
layer which forms behind the profile is assumed either 
to be continuously removed or alternatively to trans- 
mit radiation through it to the advancing profile, then 
the established exponential shape holds during propa- 
gation, and the flux profile (37) remains as 

q = @l/bt,) e-b(z-zJ (39) 

with Z,(t) the junction between the fully melted layer 
and the wave beginning. It follows from equation (32) 
that within the wave (Z > Z,) 

x = e-bZ+e-“Z 
s 

’ e*Zo(“) &‘/t, 
10 

from which we find using a = 1 at Z = Z0 that Z,,(t) 
propagates at a constant rate defined by 

Z,(l) = (t-to)/& t > to (40) 

and hence the melt profile propagation is described 
for Z > Z, by 

a = e-*G-=,W) (41) 

The total amount of melt contained in the advancing 
layer is evidently l/b as determined by scatter and 
absorption through use of equation (35). 

3.2. Volumetric thawing of an ice rod in internal radial 
irradiation 

This section extends the melting analysis of the 
previous section to inward cylindrical melting. The rod 
is initially at its melting temperature, r,,,. Here the 
analogues of equations (32)-(34) in terms of X = br 
with r the radial coordinate, are 

aa 
- = - +$x,)) at 

(Jr ’ (Xq)‘)’ = q (43) 

-&&rqy- t-; q=a(T;t-T;). (44) 
( > 

Here primes denote differentiation, d/dX. Equation 
(44) is applied at X = X, = bR, with R the initial rod 
radius, until complete melting (a = 1) is reached there 
at time to. During the melt zone formation period 
(t < to) equations (43) and (42) integrate in this order 
to 

4 = - $WJr)Zr(x) (45) 

a = (Oo)ZO(X)lZO(~R) (46) 

with Z,,Z, modified Bessel functions of order 0,l of 
the first kind. (Note that radial radiation flux q is 
negative, being defined in the positive r-direction.) 
The coefficient $(X,) and time t, are determined 
respectively as 

1 

to = $(XR)ZO(XR)’ 

At the center line (X = 0) the melt fraction for the 
formation period t < to follows immediately by equa- 
tion (46) using Z,(O) = 1. 

For times t > to we suppose that the fully melted 
layer is either sufficiently drained or transparent such 
that the boundary condition, equation (44), continues 
to hold at the outer edge, X = X,(t), of the inward 
moving melt wave. Equation (45) then immediately 
applies as 

4 = $wo)I,(x) 
so that for X < X0, aa/& = $ (X,)Z,(x) ; hence 

ZOW) 
a = ~ + Z,(X) 

Zo(X,) 

Into this result, we insert the condition c( = 1 at 
X = X0, divide by I,@‘,), differentiate in time t, sep- 
arate and integrate using (l/Z,(X))’ = I, (x)/Z:(x), to 
obtain 

XR 
t-t, = s Z,(x) 

dXG(X)ti (x>’ (51) 
X0 

This defines t(Xo) or X,(t) as a quadrature integral, 
using definition (47). Such integration also determines 
the time for complete melting by choosing X0 = 0. 
Similarly using $ (X,(t’)) dt’ = ( l/Zo(Xo))’ dX,, the 
melt profile from equation (50) reduces to 

a = Zo(JWZo(~o) (52) 

applicable for t > to, X < X,(t). The center line melt 
level for t > to is therefore just l/Z,(X,) as determined 
by equation (51). 

3.3. Solidification in a spherical cloud of molten drop- 
lets 

For this example, we consider the droplets to be 
initially all liquid at their liquidus or freezing tem- 
perature T,, and to be uniformly and homogeneously 
dispersed within a transparent medium with cloud 
radius R. Their size distribution is such that only a 
negligible mass fraction of them are so small that 
conduction-convection transfers significant latent or 
sensible heat locally to the medium in comparison to 
the bulk heat removal by internal cloud radiation flux 
q. The medium itself is therefore nonparticipating and 
may be at substantially lower temperature. 

Under these idealizations the analysis becomes an 
extension to spherical symmetry of the above two 
examples, with p = pPa’, where pP is both droplet and 
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frozen particle density, and tl’ is the droplet volume 
fraction within the cloud ; CI becomes the average frac- 
tion of a droplet in the liquid state at radial position 
r, so that c( = 1 initially for 0 < r < R. In terms of 
X = bR, X, = bR, cf. equation (35) the equations to 
solve analogous to equations (42)-(44) become 

aa -b 
p= -2 (X2q)’ at PAX 

(X-2(Pq)‘) = q (54) 

&(Pq)‘+ ;-; q=a(T:-T;:) (55) 
( > 

where equation (55) is applied at X = X, until u 
reaches zero there (at time to). For time t < t,,, we 
thereby obtain in terms of the hyperbolic functions 

PA q = -II/ (X,)(Xcosh X- sinh X)/X” 
b (56) 

au 
at’ 

- $ (A’,) sinh X/X. (57) 

Here, for E, = 1 

Ii/(X) = 

+ (g-- l)sinhX]-’ (58) 

so that the freeze fraction profile for t < to, X < X,, 
is 

t X, sinhX 
x=l-~P 

t,, X sinhX, 
(59) 

with 

XR 
to = $(X,)sinhX,’ (60) 

Equation (59) immediately yields the cloud center 
point freeze fraction using sinhX/X = 1 at X = 0. In 
particular, this becomes 

a = 1 -X,/sinhX, (61) 

at time to where freezing is just completed at the cloud 
boundary X,. After this time it is necessary to account 
for an outer zone of falling frozen droplet tem- 
peratures; hence we do not extend the isothermal 
wave propagation analysis of the above examples to 
present circumstances. The effects of scattering as con- 
tained in the coefficient b, cf. equation (35), for these 
types of problems will be much less sensitive to vari- 
ations in CI in more exact analysis and computations. 
An ultrasimplified example treating spherically sym- 
metric temperature variations is illustrated below. 

3.4. Steady state emitting sphere with volumetric heat 
source 

As a final simple example we consider spherically 
symmetric internal radiation with temperature vari- 
ations controlled by a constant volumetric heat source 

S. This could be an idealized cloud of droplets or 
particles dispersed in transparent gases, or else a more 
homogeneous non-opaque medium, provided only 
that the temperature is not internally defined, e.g. by 
a melt-freezing phase change. 

In the absence of conduction and convection, with 

constant S (radius r < R) the solution to this problem 
for the temperature field and radial heat flux is simply 

SR 
qR = Jo = a(r;:-T~) 

T;--T4 = g(K-~6). 

(62) 

The outer boundary temperature TR (and, of course, 
heat flux qR) at steady state is unaffected by scattering, 
either isotropic or anisotropic. However, the tem- 
perature profile from r = R inward is altered as shown 
by equation (63). The relation between center point 
temperature predicted with and without anisotropic 
scattering is evidently 

T4 -T; osca 
T;_T; = ‘-” (64) 

corresponding to higher center point temperatures for 
backward scatter (6 < 0) and lower values for forward 
scatter as expected. The scattering albedo R = s/K 
determines the importance of the effect. This simple 
result also follows from the diffusion approximation, 
equation (2) since V(V *q) vanishes in equation (1). 
Such equivalence does not carry over, however, as soon 
as variations of source S or transients are considered. 

4. CONCLUDING REMARKS 

In Section 1 the invariance of the pressure cross- 
section to the inclusion of forward scatter, a charac- 
teristic not shared by total extinction cross-section, 
was observed as an additional justification for recog- 
nizing the pressure cross-section as the proper one to 
use in the differential approximation for heat transfer, 
and also as fundamental to use of the Mie scattering 
solution to define radiative transport coefficients. The 
basis for this invariance is explained by observing a 
corresponding fundamental invariance property of 
the radiative transport equation (6). If a component 
of forward scatter is added to the phase function 
$ (cos Q), then to assure normalization the new phase 
function must be of the form 

$’ = c$+(l -c)6(cosO- 1)/2n. (65) 

When this expression is inserted into the scattering 
terms of equation (6) namely 

s $(cosO)i(O)dO-i(c5,) 
[s 1 

it follows that this expression retains its value if the 
scattering coefficient, and total extinction coefficient 
are changed to new values defined by 

s, = s/c (66) 
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K’ = a+s/c = a+(K--a)/c. (67) 

By transforming the scattering and extinction 
coefficients in this manner, it is readily verified that 
s( 1 - cos O), and hence K- SS is invariant to the trans- 
formation of equation (65). 

The preceding demonstrates how the powerful 
‘differential approximation’ for radiation heat trans- 
fer in an absorbing, emitting, and scattering medium 
may readily be formulated and applied to properly 
account for anisotropic scattering in three-dimen- 
sional problems with or without conditions of large 
optical depths. 

The key to the simple elegant derivation of this is 
the use of the coordinate-system invariant, i.e. 
rotationally invariant, direct vector-tensor formu- 
lation. Polyadic Legendre functions provide, in this 
approach, an alternative to the use of coordinate- 
system specific ‘P,,, approximations’ and spherical har- 
monics expansions. The orthogonality properties of 
these polyadic functions establish the general nature 
of the differential approximation for anisotropic scat- 
tering as free from arbitrary truncations. When this is 
recognized equation (1) may be reproduced using a 
very simple truncated moment scheme with direct- 
vector methods. We anticipate that invariant for- 
mulations can be used to advantage in the devel- 
opment of solutions to the field equation (6) for spec- 
tral intensity when proceeding beyond the extensively 
studied one-dimensional slab geometry. 

While this paper is limited for simplicity to isotropic 
media, scattering sites themselves, e.g. particles of a 
particle cloud, need not be rotationally invariant or 
spheres. They can also be orientable, e.g. rods, sphero- 
cylinder capsules, etc., provided their orientation is 
distributed randomly. For non-random distributions, 
the medium is anisotropic. More complex differential 
approximations for anisotropic media may be derived 
from a correspondingly generalized field equation (6) 
to account for the effect of preferred particle orien- 
tations on absorption and scattering. Such generalized 
studies will complement and provide natural coupling 
of radiation heat transfer to previous studies of other 
transport modes in systems of orientable particles [23- 
25]. 
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DIFFUSION ANISOTROPE DANS APPROXIMATION TRIDIMENSIONNELLE DU 
RAYONNEMENT THERMIQUE 

R&n&--L’approximation differentielle est etendue a la diffusion anisotrope dans une forme invariante 
tridimensionnelle. Une methode de moment utilisant les fonctions polyadiques de Legendre etablit que les 
sections droites de pression doivent avoir la preseance vis-a-vis des sections droites d’extinction pour traiter 
le rayonnement thermique dans un milieu absorbant, emetteur et diffusif et cette utilisation des sections 
droites rend compte de la diffusion avant ou arriere. On discute de la genbralisation de l’approximation 

dans quelques MS simples. 

EINE D~EIDIMENSIONALE DIFFERE~IELLE APPROXIMATION DER 
ANlSOTROPEN STREUUNG DER W~RM~ST~HL~G 

Zusammenfassung-Die differentielle Approximation wird fur anisotrope Streuung in invarianter drei- 
dimensionaler Form erweitert. Eine Momenten-Methode unter Verwendung von polyadischen Legendre- 
Funktionen zeigt, da0 bei der Behandlung des Warmeaustausches durch Strahlung in absorbierenden, 
emittierenden und streuenden Medien die Druckquerschnitte den Extinktionsquerschnitten vorgezogen 
werden sollten. Der Gebrauch dieser Querschnitte beriicksichtigt die Bevorzugung von Vorwlrts- oder 
Riickwlrts-Streuung. Die ermittelte verallgemeinerte differentielle Approximation wird anhand mehrerer 

einfacher Bespiele diskutiert. 

~OT~~AuQH~~bH~earmpoKcaMarrua nP~MeHS~TC~~liylieTa~30TPOnHOrOPaCCeffHklli 

~Ufl~p~aHTHO~ TIEXMQNiOii @OpMe.cIIOMOD&bZO MeTOJla MOMeHTOB C ~CnO~b3O~~eM nO~&iHOMOE 

JIezxaunpa ycrarioeneno, YTO cmemiK, 6 KOTOP~IX npoiicxomiT ycmeane, ~omaibf npeo6nanaTb mu 

ce-iemisMn, B KOTOP~IX Ha6nmnaeTcn ocna6neene npii pamiawiomioht nepemce Tema B nomowam- 

mix, s3ny9aIowix H paceensaromux cpenax. Taxofi pacqeT noneperlribrx Ce.qeHnii Hcnonb3yeTcn NIX 
ycTaHosneHan crenem npenaJmposamir paccerwn BnepeJ HIIH HasaA.O606rueHHblenK~~epeHUHanb- 


